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Abstract In an attempt to take full advantage of near-infrared
part of the solar spectrum, Gd2(MoO4)3:Er

3+ nanophosphors
have been proposed as potential luminescent materials to
enhance the response of the silicon solar-cell. Upon exci-
tation with low-energy near-infrared photons, intense upcon-
verted emissions at 545, 665, 800, and 980 nm, for which
energies higher than the bandgap of silicon solar-cell, have
been achieved with conversion efficiencies of 0.12%, 0.05%,
0.83%, and 1.35%, respectively. Development of nanophos-
phors for photovoltaic purposes could open up an approach
in achieving high-efficiency silicon-based solar-cell by
means of the up-conversion of the sub-bandgap near-infrared
part of the solar spectrum (E<1.12 eV) to visible/near-
infrared photons.
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Introduction

The standard air-mass (AM1.5) terrestrial spectrum covers the
wavelength region from UV to IR (200–2500 nm). However,
silicon solar-cell could only absorb UV-Vis-IR radiation with
energies larger than that of the band gap of 1.12 eV which
corresponds to wavelengths shorter than 1,100 nm. One pos-
sibility to reduce the transmission losses of the sub-band-gap
radiation is by up-conversion of the transmitted low-energy
near-infrared (NIR) photons from the solar spectrum to high-
energy photons upon the exploring the upconversion (UC)

mechanism [1–11], which can then be utilized by the silicon
solar-cell. Recently, Gibart et al. [1] have demonstrated the
feasibility of this concept experimentally by stacking a rare-
earth (RE) doped vitroceramic behind a substrate-free GaAs
solar-cell. Trupke et al. [2] have determined theoretically that
the upper limit of the photovoltaic conversion efficiency of a
single junction solar-cell coupled to an UC ideal device as
47.6%, when the sun has been modeled as a 6,000 K black-
body and 50.7% under AM1.5 terrestrial spectrum, and
Shalav et al. [3] have reported a NaYF4:Er

3+ upconverting
phosphor and shown a maximum external quantum efficien-
cy (QE) of silicon solar-cell of 2.5% with the doping con-
centrations of Er3+ as high as 20%. However, the external
QE of 2.7% in NaYF4:xEr

3+ (x=20% molar) seems on the
lower side by taking the concentration quenching (CQ) into
account when the doping concentrations of Er3+ beyond 20%,
which strongly reduces the luminescence yield. Moreover,
fluoride may not be a suitable phosphor matrix because of its
undesirable chemical nature.

Here in the present paper, our main objective is to make an
attempt to make full utilization of NIR part of the solar
spectrum, to meet this purpose, Gd2(MoO4)3:Er

3+ (GM:Er3+)
nanophosphors have been proposed as potential luminescent
materials to enhance silicon solar-cell NIR response. Er3+ is
considered to be suitable for photovoltaic UC purposes since
the spectral power from the normalized 1,000 W/m2 AM1.5
spectrum yields over 100 W/m2 between 1,100 and 1,700 nm,
which match well with the energy gap of the 4I15/2→

4I13/2
transition (∼1,500 nm) of Er3+ [3–5]. Structural and lumines-
cent properties of GM:Er3+ nanophosphors have been
investigated here. Our results show that intense UC emissions
at 545, 665, 800, and 980 nm with energies greater than the
band gap of silicon solar-cell have been achieved upon exci-
tation with NIR photons provided by a tunable laser (1510–
1565 nm), the conversion efficiencies are 0.12%, 0.05%,
0.83%, and 1.35%, respectively. Our investigation reveals that
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in principle it is an efficient luminescent converter, which in
an ideal case, converts NIR photons into visible/NIR photons
by exploiting UC mechanism. By taking into account the
thermal stability and the high efficiency of the matrix, the GM:
Er3+ nanophosphors could be identified as potential materials
for applications in high efficiency silicon-based solar-cell and
nano-photonics.

Experimental details

Synthesis of GM:Er3+ nanophosphors

Powder samples of Gd2−x(MoO4)3:xEr
3+ (x=0.05, 0.1, 0.2, 0.3

and 0.5) (in molar) nanophosphors were prepared by means of
combustion synthesis, as described in Refs. [12–14]. In brief,
Gd2O3 (99.99%), Er2O3 (99.99%), (NH4)6Mo7O24·4H2O
(A.R.), nitric acid and citric acid were used as raw materials.
Gd2O3 and Er2O3 were firstly dissolved in HNO3 to form RE
nitrates solutions. Then, to prepare the mixture solution of
ammonium molybdate and organic components, (NH4)6
Mo7O24·4H2O and citric acid were dissolved in mixture sol-
vent of ethylene glycol (A.R.) and distilled water. Finally, the
previously prepared RE nitrates solutions were added drop-
wise to the mixed solution of ammonium molybdate and or-
ganic components with a molar ratio of (2−x)Gd3+:xEr3+:3
[MoO4]

2−(x=0.05, 0.1, 0.2, 0.3 and 0.5), the mixture was then
heated in an induction heating plate with temperature range
from 100–250°C for 10 min with vigorous stirring. The ob-
tained amorphous solid precursors were then pulverized
carefully in corundum crucibles, and calcined at the temper-
ature of 950 °C for 10 h.

Characterization

The products were analyzed by means of X-ray diffraction
(XRD, Philips Model PW1830, CuKα), micro-Raman spec-
trometer (Renishaw model RM 2000), scanning electron
microscopy (SEM, JEM-1010), transmission electron micros-
copy (TEM, JEOL 2010), and fluorescence spectrometer
(Jobin-Yvon TRIAX320 equipped with a Hamamatsu R928
and R5108 photomultiplier tube. A Santec TSL-210 tunable
laser (1510–1565 nm), a Coherent 808 nm laser diode (LD),
and the 488 nm line of a Coherent Sabre Innova Ar+ laser
were used as the excitation sources).

Results and discussion

Structural characterization

Shown in Fig. 1(a) are the XRD pattern and Raman spectrum
of the obtained Gd2−x(MoO4)3:xEr

3+ (x=0.1) nanocrystals.

The XRD pattern agrees well with the standard diffraction
(JCPDS card no. 20-0408), revealing a single-phase ortho-
rhombic GM with the lattice parameters of a=10.388, b=
10.416 nm, c=10.697 nm, and has a space group of Pba2
(32). The stronger diffraction peaks appear at 25.5°, 29.4°
and 26.9°, correspond to the (221), (222), and (022) planes
respectively. In gadolinium molybdate compounds, intense
Raman bands are found from 750 to 1,000 cm−1 and 250 to
400 cm−1 at room temperature. The strong band near
900 cm−1 in the Raman spectrum of GM is assigned to the
υ1 symmetric stretching mode of Mo–O [15], the band near
840 cm−1 is assigned to υ3 antisymmetric vibration of Mo–
O, while the bands located at the region of 250–400 cm−1 are
assigned to υ2(E) and υ4(T2) bending modes of MoO4

2− ions
[15]. Raman spectrum confirms that a single phase GM is
formed in our samples. It is noted that codoping limited Er3+

with respect to Gd3+ ions does not cause any significant
change in the host structure, which is due to the similarity of
the ion radii and also due to existence of the equal electric
charges between Gd3+ and dopants Er3+. The typical SEM
image of the nanocrystals is shown in the inset of Fig. 1b. It
can be seen that the nanocrystals show homogeneous size
with narrow size distribution and mean sizes in the range
from 80–120 nm in diameter, which is larger than the cal-
culated data from Debye-Scherre’s equation indicating that
these particles are composed of nanosized polycrystalline. A
typical TEM image shown in Fig. 1c indicates the uniform
GM:Er3+ nanocrystals with smooth surface. The correspon-
ding selected area diffraction pattern is shown in the inset of
Fig. 1c.
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Fig. 1 a XRD pattern and Raman spectrum of GM:Er3+ nanocrystals.
b a typical SEM image of the nanocrystals. c TEM image of the GM:
Er3+ nanocrystals, inset shows the corresponding selected area
electron diffraction pattern
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Spectral properties

Figure 2 presents the upconverted emission spectra of GM:
Er3+ anophosphors upon excitation with a tunable laser. The
intense green emissions at 530 and 545 nm are assigned to
Er3+ 2H11/2→

4I15/2 and
4S3/2→

4I15/2 transitions, respectively,
while the red one at 665 nm is ascribed to Er3+ 4F9/2→

4I15/2
transition. Two intense NIR emissions at 800 and 980 nm have
also clearly been observed and are assigned to Er3+ 4I9/2→

4I15/2,
and 4I11/2→

4I15/2 transitions, respectively. The dependence of
the UC intensity (IUC) upon the excitation power (P) was
investigated and the results are presented in log-log plot in the
right side of Fig. 2. Remarkably, the data could be divided into
two groups for all the four transitions following to the
relationship of IUC ∝ Pn, where n is the pumping photons
required to excite RE ions from ground state to the emitting
excited state. At low power levels (P≤0.5 mW, 500 W/m2),
the results revealed cubic power law behaviors for the 545
and 665 nm visible emission signals and quadratic power
law behaviors for the 800 and 980 nm NIR signals with the
slopes of the linear fittings are 2.33 for 4S3/2→

4I15/2, 2.74 for
4F9/2→

4I15/2, 1.60 for
4I9/2→

4I15/2, and 1.72 for
4I11/2→

4I15/2,
respectively. However, for higher excitation power levels,
the saturation of the energy UC process takes place and the
corresponding slopes of the linear fittings drop down to 1.92,
1.96, 1.38, and 1.39 respectively, attributing to the compe-
tition between the linear decay and the UC processes for the
depletion of the intermediate excited states [16]. The possi-
ble energy transfer between Er3+, as well as the proposed
mechanisms to explain the UC luminescence in GM:Er3+

nanophosphors are demonstrated in detail in the inset of the
figure (Fig. 2, left).

The dependence of the aforementioned four UC emission
transitions on the incident laser wavelengths in the range of
1,510–1,565 nm are shown in the Fig. 3. Obviously, for all
the four transitions, intense broadband emissions have been
observed with at excitation at 1530 nm. The inset figure of
Fig. 3 illustrates the dependence of the UC intensity upon
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Fig. 2 a Visible-NIR UC emis-
sion spectra of GM:Er3+ nano-
phosphors upon excitation with
tunable laser. Inset shows sche-
matic energy levels of the
nanophosphors showing possi-
ble mechanisms for UC process
under excitation of visible with
tunable laser. b Log–log plot of
the UC intensity versus the
pumping power
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Fig. 3 The dependence of the four UC emission transitions on the
incident laser wavelengths in the range of 1,510–1,565 nm. Inset
shows the dependence of the green- and NIR-emission intensity on the
Er3+ doping-concentration in GM:Er3+ nanophosphors
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the Er3+ doping-concentration of GM nanophosphors under
excitation of 1,530 nm. It is noticed that the UC intensity of
the green-emission at 545 nm increases rapidly with an
increase of Er3+ concentrations ranging from 1 to 30 mol%.
However, a decrease has clearly been observed when Er3+

concentration is set to be more than 30 mol%, due to the CQ.
While, for the NIR-emission at 980 nm, maximum emission
has been obtained upon optimizing the Er3+ concentration as
20 mol%.

The GM:Er3+ nanophosphors yields a predominantly green
upconversion emission [(2H11/2,

4S3/2)→
4I15/2] in the spectrum

excited by 1,510–1,565 nm radiation, as shown in Fig. 2. The
upconversion efficiency for this transition could be deter-
mined by comparing the upconversion luminescence signal
with the directly excited signal intensity, which is given by
[17, 18]:

h ¼ hq
Pabs Visð Þ
Pabs NIRð Þ

� �
Iemit upconvertedð Þ

Iemit directð Þ
� �

ð1Þ

where Pabs(Vis) is the absorbed light power for direct
excitation with 488 nm laser or 808 nm LD, and Pabs(NIR)
is the absorbed light power for upconversion excitation with
1,510–1,565 nm tunable laser, which were determined from
the measured incident light power, the absorption coefficient
and the absorption path length in the sample. The lumines-
cence intensities Iemit(upconverted) and Iemit(direct) are the
recorded portion of the emitted light at 545 nm measured
under the same light collecting conditions. The quantum
efficiency ηq for direct excitation is defined as [17, 18]:

hq ¼
texp
tR

ð2Þ

where τexp is the measured lifetime with excitation of 488 nm,
and τR is the radiative lifetime obtained from the Judd–Ofelt
theory [19, 20]. τexp of the

4S3/2,
4F9/2, and

4I9/2 states of GM:
Er3+ were determined to be 0.126, 0.068, and 0.824 ms,
respectively. For the NIR emission at 980 nm [4I11/2→

4I15/2],
the measured lifetime, τexp, was obtained upon excitation with
808 nm LD and was found to be 0.915 ms. The radiative
lifetime (τR) of the

4S3/2,
4F9/2,

4I9/2 and
4I11/2 states of Er

3+ in
GM:Er3+ nanophosphors were estimated to be 0.299, 0.364,
3.412 and 3.199 ms according to the previous reports [21].
The incident light power density employed in this study has
been found to be 1.8, 20, and 0.5 W/cm2 for the 488 nm line
of the Ar+ laser, 808 nm LD, and the NIR tunable laser,
respectively. The obtained upconversion efficiencies for the
NIR to green-emission at 545 nm, red-emission at 665 nm,
and NIR emissions at 800 and 980 nm were 0.12%, 0.05%,
0.83%, and 1.35%, respectively. The relatively high η in the
GM:Er3+ nanophosphors might be due to the high Er3+

content, the low phonon energy, and the high refractive index
of the nanophosphors.

Conclusion

In summary, we briefly conclude that intense upconverted
four emissions at 545, 665, 800, and 980 nm with energies
greater than the bandgap of silicon solar-cell have been mea-
sured from GM:Er3+ nanophosphors upon excitation with
low-energy NIR photons provided by a tuable laser ranging
1,510–1,565 nm. The obtained upconversion efficiencies for
the four upconverted emissions were 0.12%, 0.05%, 0.83%,
and 1.35%, respectively. The development of GM:Er3+

nanophosphors as upconverted luminescent materials could
open up a potential possibility in realizing a high efficiency
silicon-based solar-cell by upconverted the sub-bandgap NIR
part of the solar spectrum (E<1.12 eV) to visible/NIR
photons.
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